
I

UK-NASA-04001
2/13/04

Final Report for Robust Requirements Tracing via
Internet Search Technology: Improving an IV&V

Technique - Phase II

Grant Number: NAG5 - 12 8 6 8
CSlP Number: CSIPO2-24

Document Number: UK-NASA-04001

13 February 2004

Prepared for:

National Aeronautics and Space Administration
Software IV&V Facility
100 University Drive

Fairmont, West Virginia 26554

Prepared by:

Dr. Jane Hayes, Dr. Alex Dekhtyar, U. KY, Science Applications International Corporation

UK

Table of Contents

1 . Introduction ...
1.1 Problem Statement ..
1.2 Project Objectives ..
2 Accomplishments ...
2.1 Improvement of IR Methods
2.2 IV&V Requirements Tracing IR Toolkit
2.3 Toolkit Testing ...
2.4 Data Used ...
2.5 Publications ..
3 ConclusiondFuture Work
3.1 Conclusions ..
3.1.1 Future Work ..
4 References ...
List of Figures
Figure 1 . Architecture of RETRO
Figure 2 . RETRO GUI ..
Appendix A
International Conference on Software Engineering Paper

3
3
4
5
5
5
8
9
9
10
10
10
11

6
8

A-l
International Conference on Requirements Engineering Paper ... A-1 1

Appendix B
Mark-up Language for Candidate Link Lists B-1

...

University of Kentucky 2

.

UK

Final Report for Robust Requirements Tracing
via Internet Search Technology: Improving an

IV&V Technique - Phase II

1. Introduction

The problem statement and project objectives are presented below.

1 .I Problem Statement

The fundamental purpose of Verification and Validation (V&V) and Independent
Verification and Validation (IV&V) is to insure that the right processes have been used to
build the right system. To that end, we must verify that the approved processes and
artifacts are guiding development during each lifecycle phase as well as validate that all
requirements have been implemented at the end of the lifecycle. A requirements
traceability matrix (RTM) is a prerequisite for both of these. Though Computer-Aided
Sofiware Engineering tools such as DOORS [Telelogic], RDD-100 [Holagent], and
Rational Requisitepro [Rational] can assist, we have found that often developers do not
build the RTM to the proper level of detail or at all. V&V and IV&V analysts are faced
with the time consuming, mind numbing, person-power intensive, error prone task of
“after the fact” requirements tracing to build and maintain the RTM. Examples of
V&V/IV&V activities that can’t be undertaken without an RTM include, but are not
limited to: verification that a design satisfies the requirements; verification that code
satisfies a design; validation that requirements have been implemented and satisfied;
criticality analysis; risk assessment; change impact analysis; system level test coverage
analysis; regression test selection. V&V/IV&V can be viewed as the backbone of safety-
critical, mission-critical, and Critical-Catastrophic High Risk (CCHR) systems.
Similarly, the RTM can be viewed as the backbone of V&V/IV&V.

~~ -

University of Kentucky 3

UK
Requirements tracing consists of document parsing, candidate link generation,

candidate link evaluation, and traceability analysis. As an example, consider
requirements in a high level document such as a System Specification being traced to
elements in a lower level document such as a Software Requirement Specification.
Generally, after the documents have been parsed and requirements have been extracted
from the two document levels, an analyst will manually read each high level requirement
and low-level element and assign keywords to each. A keyword-matching algorithm is
then applied to build lists of low-level elements that may potentially satisfy a given high-
level requirement. These are called candidate links. There are two commonly accepted
metrics in evaluating candidate links: the percentage of actual matches that are found
(recall) and the percentage of correct matches as a ratio to the total number of candidate
links returned (precision). The analyst reviews the candidate links and determines which
are actual links (candidate link evaluation). Finally, after tracing is complete, the analyst
generates reports of the high level requirements that do not have children and the low
level elements that do not have parents (traceability analysis).

Current approaches to after-the-fact tracing have numerous shortcomings: they require
the user to perform interactive searches for potential linking requirements or design
elements, they require the user to assign keywords to all the elements in both document
levels prior to tracing, they return many potential or candidate links that are not correct,
they fail to return correct links, and they do not provide support for easily retracing new
versions of documents. To ensure requirement completion and to facilitate change
impact assessment, a method for easy “after-the-fact,’ requirements tracing is needed.

1.2 Project Objectives

There are three major objectives to this phase of the work.

(1) Improvement of IR methods for IV&V requirements tracing. Information Retrieval
methods are typically developed for very large (order of millions - tens of millions and
more documents) document collections [Baeza-Yates] and therefore, most successfully
used methods somewhat sacrifice precision and recall in order to achieve efficiency. At
the same time typical IR systems treat all user queries as independent of each other and
assume that relevance of documents to queries is subjective for each user. The IV&V
requirements tracing problem has a much smaller data set to operate on, even for large
scfiware developme;;: pmj eets; the set of cjueries is predeiemiiiieb by the high-level
specification document and individual requirements considered as query input to IR
methods are not necessarily independent from each other. Namely, knowledge about the
links for one requirement may be helpful in determining the links of another requirement.
Finally, while the final decision on the exact form of the traceability matrix still belongs
to the IV&V analyst, hisher decisions are much less arbitrary than those of an Internet
search engine user. All this suggests that the information available to us in the framework
of the IV&V tracing problem can be successfully leveraged to enhance standard IR
techniques, which in turn would lead to increased recall and precision. We developed
several new methods during Phase 11.

University of Kentucky 4

(2) IV&V requirements tracing IR toolkit. Based on the methods developed in Phase I
and their improvements developed in Phase 11, we built a toolkit of IR methods for IV&V
requirements tracing. The toolkit has been integrated, at the data level, with SAIC’s
SuperTracePlus (STP) tool.

(3) Toolkit testing. We tested the methods included in the IV&V requirements tracing
IR toolkit on a number of projects.

2. Accomplishments

The two major objectives, improvement of IR methods and implementation of IR
methods for IV&V requirements tracing, are discussed below.

2.1 Improvement of IR Methods

During the course of the project, we have studied the applicability of basic Information
Retrieval (IR) methods for tracing requirements. While traditional “bread-and-butter” IR
approaches appear to produce good results in traditional IR domains, requirements
tracing presents a number of challenges to such methods. In particular, such traditional
IR methods are designed to work on very large (hundreds of thousands to billions of
documents) document collections. They are also designed to work on relatively large
documents. In the requirements tracing setting, the size of the collection is reasonably
small: on the order of hundreds or thousands of individual requirements, while individual
requirements are usually relatively small - one to three sentences long.

With this in mind, we first considered the behavior of three traditional IR methods on
requirements tracing problems. The methods implemented were:

(A)TF-IDF vector retrieval. Vector model represents each document (requirement)
and each query (higher-level requirement) as vector of keyword weights and
computes similarity between documents and queries as a cosine of the angle
between the vectors.

(A)TF-IDF vector retrieval with simple thesaurus. An extension of the standard
TF-IDF retrievl vith a simp!e thesaurw of synonyms md a~ttonyms.

(A) Probabilistic Retrieval. Also known as Binary Independence Retrieval or NaNe
Bayes Retrieval, this method attempts to estimate the probability that a given
document is relevant to the query.

In addition, we are currently in the process of adoption and development of two more IR
methods for Requirements Tracing:

(a) Latent Semantic Indexing (LSI). LSI uses Single-Value Decomposition (SVD)
for the matrix of keyword weights constructed by the TF-IDF method. It allows

University of Kentucky 5

us to reduce the dimensionality of the problem and “condense” information,
potentially capturing some “hidden concepts” in the document collection.

(b) Retrieval for Sinale Documents. A number of Text Mining methods have been
recently proposed to construct descriptions of individual documents based on co-
occurrence of terms in document sentences. We are, at present, working on
adopting these techniques for the purpose of Information Retrieval.

Together with the three IR methods already developed, we have implemented user
feedback processing techniques. Feedback processing allows our requirements tracing
software to establish a dialog with the analyst doing requirements tracing. Our IR
methods provide the analyst with the list of candidate links. The analyst examines some
of them and determines whether or not matches are found. This information is fed back
into the IR method, which, in turn, produces a new list of candidate links that tries to take
advantage of the information communicated by the analyst.

More detailed information about the methods used in this work can be found in the
papers attached in Appendix A.

RETRO Architecture

1 processor J p i l a jy,

n

Figure 1. Architecture of RETRO.

2.2. Implementation of IR Methods for IV&V Requirements Tracing

This section describes the details of implementation of the IR methods for the purposes of
Requirements Tracing. Our work yielded two concurrent developments: the standalone

University of Kentucky 6

UK
requirements tracing tool RETRO (REquirements TRacing On-target), and a package
integrating our IR methods into SAIC's SuperTracePlus (STP) tool.

2.2.1 RETRO - Standalone tool

First, the existing set of standalone tools were documented and debugged. Next, these
tools were integrated with a JAVA GUI (recall that the standalone tools (IR methods)
have been developed in C++). Some parts of the GUI were modified based on user
feedback. The other tools were maintained as well. The Feedback loop tool was then
developed and integrated with RETRO. A new method for probabilistic IR had also
been integrated.

The overall architecture of RETRO is shown in Figure 1. The GUI is used to set up the
project. Once the high- and low-level requirements are specified, and the IR method is
chosen, the Build component, constructs the representation of the requirements and stores
it on disk. Next, the specified method from the IR Toolbox is used to produce the first
list of candidate links. This list, encoded in XML (See Appendix B for the DTD and
examples), is then, optionally, processed by the Filtering component, designed to make
the list somewhat smaller, without sacrificing accuracy. Using the GUI (Figure 2), the
analyst checks a number of links and delivers hisher decisions back to RETRO.
Encoded in XML, this information is provided to the Feedback Processor, which
prepares the data for the next application of the IR method.

Next, we ported the Linux version of RETRO to Windows. The Windows version of
RETRO uses FLEX for Windows and also XERCES Java and C++ parsers for XML.

2.2.2. Integration with SAIC

The main goal in integrating with SAIC's STP tool was to allow our process of candidate
link generation substitute, at user's option, the traditional process employed in STP,
which requires manual keyword assignment. The key aspects of integration involve
porting the IR toolkit of RETRO to Windows, and providing the facilities for passing
information back and forth between the toolkit and the main body of STP.

We wrote several procedures in JAVA to convert the SFEP input data from SAIC's
format into the format that RETRO accepts. We also wrote procedures to convert the
XML results produced by RETRO into an ASCII delimited format that SAIC requires.

We also wrote a procedure in VB which SAIC will use to call our Feedback methods.
The input parameter to this procedure is a set of "yeslink It and 'holink'l information
about each parent-child pair in the candidate links. The feedback method will take this
information and update the candidate links. The result will be sent back to SAIC's STP
tool in ASCII delimited format.

University of Kentucky 7

UK

. . . - . .-, .- - . . .

. . . 4 ,.

Figure 2. RETRO GUI.

2.3 Toolkit Testing

We have conducted a series of experiments designed to determine the applicability of our
approach to requirements tracing. Our first objective was to measure the quality
(accuracy) of the candidate link lists generated by the implemented IR methods and the
improvement. The standard IR measures of precision and recall have been used to
evaluate accuracy.

Our second objective was to study the question of method qp!icaMity in a mcre
general sense. As we explain in [RE04], obtaining a high quality list of candidate links is
not enough: requirements tracing is the process, by its nature, driven by a human analyst.
Therefore, the real decisions about the success of our approach can only be made by
studying how well the human analyst can perform requirements tracing using our tools.

The latter question has two components: objective and subjective. The objective
component concerns the ability of our software to improve the candidate link lists taking
advantage of the analyst activity in trace verification. In particular, this involves treating
analyst's choices as feedback and processing it in order to find a better list of candidate
links. Here, our interest lies not only in the pure accuracy of candidate link lists, but also
in the quality: we want to ensure as the analyst proceeds to evaluate individual candidate

University of Kentucky a

UK
links, true links will tend to “rise” to the top of candidate link lists produced by the
software, while false positives will tend to drop. A number of special metrics were
designed to address the issue of measuring the change in the quality of the candidate link
lists in addition to the accuracy.

We also note that the subjective component of testing must take into account the overall
usability of the software and other related human factors. For example, determination of
the circumstances under which the analyst work tends to lead to best improvement.

In [RE031 we have reported some preliminary results on the accuracy of the main
methods tested so far: TF-IDF and TF-IDF with simple thesaurus. In [RE041 we have
reported the results of our fkrther experiments related to testing the objective component.
These involved simulating a variety of “perfect” analyst behaviors for user feedback
(“perfect” means providing the Feedback Processor only with correct information) and
recording the changes in the accuracy and quality of the candidate link lists. The results
obtained in the testing are discussed in detail in [RE041 (see Appendix A) and were very
encouraging. ’

2.4 Data Used

The main dataset that we have been working with consists of open source documents for
the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) [Level 1 A,
MODIS]. The dataset contains 19 high level and 49 low-level requirements. The trace
for the dataset was manually verified and 42 correct links were found.

We also have three other datasets, in varying degrees of completion. The International
Space Station provided us with several levels of documents. We do not have the answer
set for these though. Similarly, the Metrics Data Program provided us with a nice data
set called CM-1. We have traced this dataset, but are still in the process of verifying that
the trace is correct so that we can use it as a test set. Finally, we have a very small
dataset from an open source imaging radio telescope called the Low Frequency Array
(LOFAR). This dataset has been useful to us because the wording in both document
levels is nearly identical and there is much use of many generic words. It is a particularly
challenging dataset that we are using to improve OUT methods.

2.5. Publications

During Phase I1 of the work, we wrote two papers, listed below and attached as Appendix
1 and Appendix 2. The first paper was submitted to the International Conference on
Software Engineering (ICSE). It was not accepted for publication. [Note that the typical
acceptance rate is below 15%] The second paper was submitted to the International
Conference on Requirements Engineering and is currently under review. Authors will be
notified in April.

Jane Hayes,. Alexander Dekhtyar, Senthil Sundaram, Sarah Howard, “On Effectiveness of
User Feedback-based Information Retrieval Methods for Requirements Tracing,”
submitted to the International Conference on Software Engineering in September 2003.

University of Kentucky 9

UK
Jane Hayes, Alexander Dekhtyar, Senthil Sundaram, Sarah Howard, “Helping Analysts
Trace Requirements: An Objective Look,” submitted to the International Conference on
Requirements Engineering in January 2004.

3. ConclusiondFuture Work
Below, we present our conclusions for this work as well as the research areas that are still
before us.

3.1 Conclusions

The conclusions we have reached after Phase 2 of the project are two-fold.

(A) Traditional “bread-and-butter” IR methods allow us to drastically decrease the
time it takes for the analysts to obtain the lists of candidate links. Recall values
are quite high, that is, the vast majority of the true links are captured one way or
another. Precision, on the other hand, is fairly low. At the same time, the overall
accuracy of our best method (TF-IDF thesaurus) exceeded that of the state-of-the-
art requirements tracing tool in a head-to-head experiment [RE03].

(B) The biggest potential (Le., measured objectively) improvement in the
requirements tracing process occurs when IR methods generating candidate link
lists are combined in an iterative process with user feedback (aided by filte@g of
the candidate link lists) and feedback processing.

3.2 Future Work
Our future work will proceed in a number of directions: (a) study of the subjective
aspects of analyst work with RETRO, including the study of usability of the tool; (b)
development of more complex methods for candidate link list generation; and (c)
extension of the functionality of RETRO and its ability to work with the analysts. Each
direction is briefly addressed below.

3.2.1 Usability Feedback Needs

As our work proceeds, we hope to gain valuable information from those who use RETRO
and/or the STP tool with our IR toolbox. Some examples of usability feedback of interest
follow:

0 Is the user interface easy to understand?
0 Is the user interface easy to use?
0 Are unnecessary steps or mouse clicks required in order to perform work?

University of Kentucky 10

0

e

e

0

e

A

Is the data arranged on the screen in such a way as to facilitate the tracing process?
How many candidate links are you willing to examine for each high level
requirement?
How many iterations of tracing with feedback are you willing to perform?
Is it convenient to start working with the tool on a new project?
Do you have suggestions regarding the input formats for the data?

comprehensive study of the usability of RETRO, and analyst tendencies in
requirements tracing procedures is in preparation.

3.2.2 Planned Future Work

We plan to continue to study feasibility and applicability of different IR methods to the
problem of candidate link generation. As mentioned in Section 2.1, two methods are
currently in the works. Other methodology, involving more complex supporting artifacts,
or models can be evaluated in the future. In addition to evaluation of the accuracy,
feasibility of using each particular method must be addressed: generation of certain
artifacts may be a time-consuming, human labor-intensive process.

In parallel, we are planning to continue the development of RETRO. Without the
benefit of the usability/analyst tendencies study, the current version of RETRO does not
take into account a variety of important information that it can easily collect about the
modus uperundi of a specific analyst who is using it. Knowing such information may
allow us to better analyze the candidate link lists constructed by the IR toolbox methods
and determine filtering techniques and policies to be used, that are likely to improve the
work of the analyst. By examining the tracing process with the analyst in the loop, we
hope to improve not only the recall and precision of candidate link lists, but also improve
the “tracing experience” of the IV&V analyst who is performing the work. This should
also contribute to improved answer sets as analysts will be willing to spend more time
performing the trace. Improved answer sets will in turn improve the overall IV&V
process as so many IV&V activities, such as change impact assessment and testing,
depend on the traceability information.

4. References

[Baeza-Yates]
Retrieval”, ACM Press, Addison-Wesley, 1999.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto, “Modern Information

[Holagent] Holagent Corporation product RDD- 100,
http://www. holagent. com/new/products/modules. html

[Level 1 A]
Specification, SDST-O59A, GSFC SBRS, September 1 1 , 1997.

Level 1A (L1 A) and Geolocation Processing Software Requirements

University of Kentucky 11

UK
[MODIS] MODIS Science Data Processing Software Requirements Specification
Version 2, SDST-089, GSFC SBRS, November 10, 1997.

[Rational] Rational Requisitepro, http://www.rational.com/products/reqpro/index.j sp

[RE031 Jane Hayes, Alexander Dekhtyar, James Osbourne, “Improving Requirements
Tracing via Information Retrieval,” in Proceedings of the International Conference on
Reauirements Engineering (RE), Monterey, California, September 2003.

[RE041 Jane Hayes, Alexander Dekhtyar, Senthil Sundaram, Sarah Howard, “Helping
Analysts Trace Requirements: An Objective Look,” submitted to the International
Conference on Requirements Engineering in January 2004, University of Kentucky
Technical Report number TR 392-04.

[Telelogic] Telelogic product DOORS,
http://www. telelogic.com/products/doorsers/doors/index.cfm

University of Kentucky i2

UK
Appendix A - Research Papers

~ _ _ _ _ _ _ _ ~

University of Kentucky 13

Appendix B - Mark-up Language for Candidate Link Lists

University of Kentucky 14

On Effectiveness of User Feedback-based Information Retrieval Methods for
Requirements Tracing

Jane Huffman Hayes Alex Dekhtyar Senthil Karthikeyan Sarah Howard
Department of Computer Department of Computer Sundaram Department of Computer

Science Science
Lab for Advanced

University of Kentucky
hayes@cs. uky..edu

(corresponding author)

University of Kentucky
Networking dekhtyar@cs. uky. edu

Abstract
This paper presents an approach for improving
requirements tracing by adding user feedback processing
to information retrieval (IR) techniques. Specijkally, we
focus on improving recall and precision in order to
reduce the number of missed traceability links as well as
to reduce the number of irrelevant potential links that an
analyst has to examine when performing requirements
tracing. An iterative user feedback processing method
was applied to two IR algorithms to address this problem.
We evaluated our algorithms by comparing their results
and performance to an oracle (the correct trace results).
Initial results suggest that user fiedback processing
increases recall by about 20% while also decreasing the
number of irrelevant potential links, At the same time the
quality of candidate link lists improves, with true links
occupying more prominent positions.

Research
1. Introduction

Despite the existence and increasing adoption of
Computer-Aided Software Engineering (CASE) tools,
there are still many software projects for which no
Lt;yuiremenis trace exists. Lack of this infomiation in a
typical development effort hinders debugging, testing,
change impact analysis, and cost estimations, just to
mention a few. For a safety-critical or mission-critical
project, lack of this information could easily halt work.
For example, an instrumentation and control (I&C)
software subsystem of a nuclear power plant will not pass
safety requirements if it cannot prove that all lines of
source code emanate from approved requirements.
Requirements tracing addresses this.

I^-...

Department of Computer Science
Science University of Kentucky

University of Kentucky sehowa2@uky. edu
skart2@uky.edu

Unfortunately, requirements tracing is not a pleasant
task. There is currently much manual, boring, person time
that is required. Take for example the task of tracing a
requirement specification to all its children design
specifications. Analysts must interactively search through
large softcopy requirements specification and alternately
search through several design specifications to fmd
potential links or traces. In addition to being distasteful, it
is highly error prone work. Automated assistance for this
is largely aimed at aiding developers to build the trace as
they perform software development. But often that does
not occur, and there is a lack of automated tools for
assisting analysts who must perform tracing “after the
fact.”

This research addresses the requirements tracing
problem through application of information retrieval
methods. Previously, we focused on the problem of
generating candidate links, discussed in [I I].
Specifically, the tf-idf vector model and simple thesaurus
model were applied and found to be effective and
efficient. Our focus has now broadened to the overall
requirements tracing process. The penultimate goal is to
develop an efficient, effective tracing tool that makes the
best use of the analyst’s time and expertise. A typical
requirements tracing process used by independent
verification and validation (IV&V) agents includes two
stages of interest: candidate link generation and
assessment of these links. Existing requirement tracing
tools such as SuperTracePlus [10,15], as well as [I l l ,
provide assistance for the first stage but not the second.

This work builds on the successes of [1 13 to address the
second stage of candidate link assessment. To that end,
we have implemented a feedback method that allows the
analyst to evaluate a small subset of the candidate links at
each step. This information is used by the tool to generate
improved candidate links on the next step. We found that

A-1 1

this approach to candidate link evaluation leads to
improvement of the quality of the links and provides a
structured way for the analysts to work with the data. In
particular, the feedback method allowed us to find around
80% of the links within a trace (e.g., of a requirements
specification to its children design specifications) with one
in four of the candidates being actual links. The feedback
processing method allowed us to improve the percentage
of found links by 19% while doubling the signal-to-noise
ratio. We have also discovered that minimal interaction
with the analyst yields better, or at least as good, results as
high interaction. In addition, filtering techniques allowed
us to increase signal-to-noise ratio from 1:3 to over 2:1,
while not leading to significant decreases in number of
true links found.

There are two important metrics in evaluating
requirements traces: the percentage of actual matches that
are found (recalf) and the percentage of correct matches
as a ratio to the total number of candidate links returned
(precision). Recall and precision values for current
tracing methods are not widely known or generalized.
This research is aimed at improving the state of the art of
after the fact requirements tracing.

IR background, IR methods, and the relevance feedback
method applied are presented in Section 2. The tool and
the results obtained from evaluation are discussed in
Section 3. Section 4 addresses related work. Finally,
Section 5 presents conclusions and areas for future work.

2. Information retrieval (IR) for
requirements tracing

The main problem studied in the field of Information
Retrieval (IR) is determination of relevant documents in
document collections given user-specified information
needs [8,9]. Most IR methods operate by converting each
document in the collection into a mathematical
representation that tries to capture the information content
of the document and comparing such representations to
similar representations of user information needs
(queries). The majority of IR methods are keyword-based:
the document and query representations incorporate
information about the importance of specific keywords
found in the document.

2.1 Requirements Tracing as an IR problem

Generally speaking, requirements tracing can be viewed
as a problem of document comparison. High- and low-
level requirements form two collections of documents.
The analyst then compares high-/low-level requirement

pairs and for each such pair makes an explicit or implicit
similarity judgment.

Such a setup appears to be similar to the basic IR
problem. In forward requirements tracing, the low-level
requirements form the document collection and the high-
level requirements form the set of queries. For each such
high-level requirement query, relevant low-level
requirements would, ideally, be the ones that trace back to
it. In [1 I] we have studied the applicability of some of the
traditional IR methods to the problem requirements
tracing. We found that simple IR methods are not enough
for robust determination of the trace. Simple keyword-
based retrieval using vector model showed insufficient
recall and poor precision. We were able to increase the
recall to about 85% by using a simple thesaurus of terms
and key phrases, however, precision still remained around

Such a showing is hardly surprising. While on the
surface requirements tracing shares a lot of common traits
with the traditional Information Retrieval tasks, there are
also significant differences that make direct applications
of IR methods less effective. These differences are:
1. Size of the domain. A typical size of a real requirements

tracing project does not exceed thousands of
requirements for both levels. Smaller projects have
the numbers of requirements in hundreds. At the same
time, typical IR methods are designed to work on
document collections that contain millions of
documents. The larger the size of the collection, the
more processing time is needed, but also, more
information can be gathered about the collection and
the vocabulary used will be larger, more diverse.

2. Size of requirements. Individual requirements in the
requirements and design documents are, typically, no
longer than a couple of sentences. Such small texts
mean fewer keywords per document in the
constructed document representations. Together with
smaller number of documents (requirements)
themselves, this gives rise to anomalies when one or
two casual keyword matches in unrelated
requirements get high relevance scores. This stands in
contrast with traditional IR domains where documents
are much iarger ana thus have expressive
representations not prone to the influence of a single
keyword.

3 . Interdependence of requirements. In a standard IR
system all queries issued by users are considered to
be independent. The results of one query are not
really compared with the results of another query
directly (although using collaborative filtering
techniques it is possible to suggest relevant
documents based on results of prior similar queries).
In requirements tracing, because all queries come

30-4OYo.

I

A-I2

from the same document, and some of them represent
related requirements, comparison of candidate links
for such related requirements may yield extra
information. Standard IR methods, however, do not
do that.

We can attempt to improve the performance of IR
methods in requirements tracing in two ways. The first is
implementation of more complex algorithms that take
advantage of more than just straightforward keyword
matches between the documents. The second way is to use
iterative techniques, such as user feedback processing to
improve the performance of already implemented methods
- our current work.

The use of feedback processing is particularly
appropriate for the requirements tracing problem because
we believe that despite the clear need to automate the
process itself, the final word on the trace has to belong to
a human analyst. The use of feedback processing inserts
the analyst into the appropriate place in the process of
requirements tracing: the analyst will serve as a facilitator
of the process and validator of the results.

Given an IR algorithm, the user feedback loop proceeds
as follows. On the first iteration, the analyst chooses the
high- and low-level requirements and starts the IR
algorithm. Once the algorithm produces the candidate
trace, the analyst examines it and makes decisions
concerning the candidate links. The analyst can vote to
include a suggested candidate link in the trace, exclude it
from the trace, or leave the status of the link as-is for the
moment. At some point, the analyst may stop the
examination process and submit the intermediate results.
The analyst’s choices of relevant (included in the trace)
and irrelevant (excluded from the trace) requirements
cause the feedback processing part of the loop to change
the representation of the high-level requirements. This
causes the subsequent rerun of the IR algorithm to find
more requirements similar to the ones deemed relevant
and relegate requirements found to be similar to the
irrelevant ones. The analyst then can continue the same
process with the newly obtained and improved list of
candidate links. The loop repeats until the analyst is
completely satisfied with the trace. The key issue to note
here is h i t &e w,dyst does iioi hxve to examine every
single candidate link on any of the steps. Standard
feedback processing methods show good results for very
few answers provided by the user and tend to converge in
very few iterations.

2.2 Methods applied

For this study’ we have used two IR algorithms
implemented previously [1 11: vanilla vector retrieval,
otherwise known as rf-idf retrieval and vector (tf-id0

retrieval with a simple thesaurus. On top of these
algorithms we have implemented the Standard Rochio [8]
feedback processing method.

2.2.1 Tf-Idf model

Standard vector model (also known as tf-idf model) for
information retrieval is defined as follows. Each document
and each query are represented as a vector of keyword
weights. More formally, let V = {kl, ..., kN) be the
vocabulary of a given document collection. Then, a vector
model of a document d is a vector (wl, ..., wN) of
keywords weights, where wi is computed as follows:

w, = tf; (d) - idf,.
Here ll;(d) is the so-called termfrequency: the frequency
of keyword ki in the document d, and id$, called inverse

documentfrequency is computed as idf, = log, - [; 1,
where n is the number of documents in the document
collection and dJi is the number of documents in which
keyword ki occurs. Given a document vector
d=(wl, ..., wN) and a similarly computed query vector
q=(qI, . . . ,qN) the similarity between d and q is defmed as
the cosine of the angle between the vectors:

N

C w i *qi
sim(d,q) = cos(d,q) = , :=’

N

2.2.2 Tf-Idf + Simple Thesaurus

The second method used in [111 extends tf-idf model
with a simple thesaurus of terms and key phrases. A
simple thesaurus T is a set of triples <t, t ’ , @ - , where t
and t ’ are matching thesaurus terms and a is the similarity
coefficient between them. Thesaurus terms can be either
single keywords or key phrases - sequences of two or
more keywords. While thesauri organized in such a way
are indeed quite simple - they do not contain any
ontologies or taxonomies, it is still possible to express a
number of important features using them. In particular,
one can specify using simple thesauri:

1. Synonyms:

2. Important key phrases:
(error, fault, I . 0)

(Greenwich meridian, Greenwich meridian, 1.0);
3.

4.

Similar key phrases:
(sequence of keystrokes, standard input, 0.8);
System IDS:
(Device-Not-Found, Error Message, 0.7);

A-I3

5 . Abbreviations:
(RE, Requirements Engineering, 1.0).

The vector model is augmented to account for thesaurus
matches as follows. First, all thesaurus terms that are not
keywords (Le., thesaurus terms that consists of more than
one keyword) are added as separate keywords to the
document collection vocabulary. For example, after
processing the second example from the list above, the
vocabulary will contain entries for “Greenwich, ”
“meridian, ” and “Greenwich meridian. ” The weight of a
vocabulary entry (single keyword, or a thesaurus term) in
a document remains unchanged. However, given a
thesaurus T={<ki,kj, aJ>}, and document and query
vectors d=(w/ ,..., wN) and q=(ql, ..., qN), the similarity
between d and q is computed as:

2.3 Incorporating relevance feedback from
analysts

Relevance feedback is a technique to utilize a users
input to improve the performance of the retrieval
algorithms. Relevance feedback techniques adjust the
vector weights of the query according to the relevant and
irrelevant documents found for it, as supplied by the user.
The document vectors remain unchanged. The methods
for changing the weights are based on the ideal formula:

where R is the number of documents relevant to a specific
information need in the entire document collection and N
is the size of the collection.

However, this formula cannot be used since finding the
set of relcvant documeiits is the goal of the a!go;it!~.
Instead, given a query q, the result of executing an IR
algorithm on q and a list of relevant and irrelevant
documents contained in it, an approximation needs to be
constructed. More formally, let q be a query vector, and
Dq be a list of document vectors returned by some IR
method given q. Further, assume that D has two subsets:
Dr of size R of documents relevant to 4 and Dirr of size S
of irrelevant documents that have been provided by the
user. Note that Dr .and Dirr are disjoint, but do not
necessarily cover the entire set Dq. One of the most

popular methods for computing the new representation of
query q is Standard Rochio [a]:

Intuitively, query q is adjusted by adding to its vector a
vector consisting of the document vectors identified as
relevant, and subtracting from it the sum of all document
vectors identified as false positives. The first adjustment
should lead to the inclusion of documents similar to the
relevant ones into the answer set on the next step - thus
potentially increasing recall. The second adjustment
should result in documents similar to the known irrelevant
documents getting significantly lower relevance rating and
dropping fiom the answer set, thus potentially increasing
precision. The constants a, B, ? in the formulas above can
be adjusted in order to emphasize such positive or
negative feedback as well as the importance of the original
query vector. Once the query vectors have been
recomputed, the selected IR algorithm is run with the
modified query vectors. This cycle can be repeated until
the user is satisfied with the results. After all of the
vectors for the high level requirements have been
modified, the retrieval formulas are computed again, and
the new results are displayed.

3. Evaluation

This section presents the prototype tool, the tests
used to evaluate our approach, and a discussion of results.

3.1 Requirements tracing tool
A prototype requirements tracing tool has been built and

used in the tests. The tool implements three IR methods,
as described in [l l] , and Standard Rochio feedback
processing. Only two of the IR methods have been used
in this study (see Section 2.2). For each method, the tool
implements three tasks: a) building document models, b)
building query models, and c) generating candidate link
lists. Feedback processing can be used with any of the IR
methods. The front-end to the tool has been implemented
in Java, whereas aii the iR aigorithms and feedback
processing are implemented as a C++ toolkit with uniform
APIs, allowing for simple extensions of the toolkit with
implementations of new methods. XML has been used for
uniform data transmission between tool components. Use
of the tool for the study is further described in Section 3.2.

3.2 Study Design
In our study, we used slightly modified implementations

of tf-idf and simple thesaurus retrieval algorithms applied
in [Il l . The improvements were mostly internal and did

A-I4

not affect the output of the methods. These two algorithms
have been incorporated in a prototype requirements
tracing tool. In addition, the relevance feedback loop
using Standard Rochio method has been implemented
within the tool.

To assess the effectiveness of requirements tracing using
relevance feedback method, we performed tests of both
the tf-idf and thesaurus approaches. We used a modified
dataset from [l 13 based on open source NASA Moderate
Resolution Imaging Spectroradiometer (MODIS)
documents [12,14]. The dataset contains 19 high level
and 49 low-level requirements. The trace for the dataset
was manually verified and 42 correct links were found.

To ensure that we evaluated the effect of relevance
feedback processing on recall and precision and not on
analyst ability to correctly select matches from a candidate
match list, we designed the tests as follows. Graduate
student volunteers (analysts) used the verified trace (the
“right answers”) to provide feedback to our tracing tool.
The study design is described in Table 1. At the beginning
of each test, the analyst loaded the dataset into the tool
and selected the IR method: tf-idf or simple thesaurus.
The method was run on the dataset and the results were
displayed for the user to observe and modify.

Analyst interaction with the requirements tracing tool
via the feedback loop was guided by the Behavior
parameter. Top i behavior means that at each iteration, the
analyst was to correctly mark the top i unmarked
candidate links from the list for each high-level
requirement. For example, for each high level
requirement, the analyst implementing Top 1 behavior
examined the top candidate link suggested by the IR
procedure. If this link had not been marked yet, the
analyst determined whether the link was correct (using the
answer set provided), and selected a “link” or “no link”
choice to provide relevance feedback to the system. If the
top link had already been marked as “link” on previous
steps, the analyst looked for the first unmarked link in the
list for that requirement. After repeating the Top i
relevance feedback procedure for each high level
requirement, the analyst submitted the answers to the
requirements tracing tool. The tool processed relevance
feedback using Standard Rochio procedure and submitted
the new queries to the IR method. New results were
reported to the analyst, starting a new iteration. The
process continued for eight iterations or until the analyst
noticed that the results had converged.

The key question the tests were designed to answer is:
0 How does the quality of the list of candidate links

change from iteration to iteration?

Tf-idf

Table 1. Experiment Design.

~~ I method
1 Standard I TOD 1 8

I IR method I Feedback I Behavior I # Iterations I

Tf-idf

~~

method

Rochio Top 2
Standard Top 1 8 I Rochio I Top2 I 11 Thesaurus Standard

We evaluated the quality of the list of candidate links
using a number of metrics. In particular, we considered
the following questions:

How many real links are found and how many
false positives are returned?

What is the structure of the list of candidate
links? Are true links more prominent than false
positives?

The first question was addressed by computing precision
and recall for each iteration of each test. To answer the
second question we have introduced a number of
secondary measures, designed specifically to compare and
contrast the positions and/or relevances of true links and
false positives. The metrics considered are:

0

a. ARE Average relevance of a true link in the list;
b. ARF: Average relevance of a false positive in the list;
c. DrffAR = ART - AIU? the difference between average

relevances of true links and false positives; and
d. Lag: average number of false positives with higher

relevance coefficient than a true link.

3.3 Results
The precision and recall results obtained in our tests are

summarized in Table 2. In each cell, precision is
indicated first followed by recall. The maximal precision
and recall achieved in each experiment are highlighted
and the maximal values for each retrieval method are also
underlined. The results are also visualized in Figure 1,
which contains the precisiodrecall trajectories for all
experiments, grouped by the 1R method used (top: tf-idf,
bottom: simple thesaurus). From these results we can
make the following observations:
- Both tf-idf and simple thesaurus retrieva1,when used

without feedback, produce moderately high
reca11(57.1% for tf-idf and 64.2% for simple
thesaurus), but the precision is very low: 1 1.3% for tf-
idf and 12.2% for simple thesaurus.

A-1 5

Table 2. Results of Experiments: Precision and Recall.

- With relevance feedback, both tf-idf and simple the Top 2 behavior. The best overall recall numbers
thesaurus retrieval exhibited similar recall patterns. were obtained at iteration 5 in Top 1 behavior for tf-
Over the course of the iterations, the recall increased idf and at iterations four and six in Top 2 behavior for
by about 19%, before either stabilizing or somewhat simple thesaurus.?

occurs fairly early on: at iterations 2, 3 or 4 (this can smaller for the simple thesaurus retrieval method.
- With relevance feedback, both tf-idf and simple be seen on the trajectories of all experiments in

thesaurus retrieval exhibited similar precision Figure 2). After this jump, the recall tended to level
patterns. On early iterations, precision decreased off while precision continued to grow.
slightly. But starting with iteration 3 9 it would grow As seen from the results and discussion above, while the
monotonicab' with each new iteration- For and use of relevance feedback allowed us to achieve high (up
Top precision eventualb' to 83%) recall, the precision continued to be the Achilles

20% --- a 90%-100% increase from the heel of the approach: even in the best cases, only I out of
original precision values. every 4 - 5 candidate links was correct. To see if precision
The quality of answers obtained for behaviors with can be improved without significant damage to recall, we
little interaction with the system (Top 1 and Top 2) have applied a number of filters, designed to throw out
was as good, or better than, that for high-interaction some of the candidate links from the list produced on each
-.,..I..V." ~. -~ 2 and Top 4). In fact, for both tf-idf iteration. In particular, we looked at the following three
and simple thesaurus retrieval, the highest overall filters:
precision numbers were obtained at iteration eight in

decreasing in Some cases. The drop-off in was - In all tests the major quantitative jump in recall

-

Table 3. Filtering Summary.

'Within 0.5 Best 63.6 33.3 54.7 54.7 53 61.9 40 57.1
Difference 46.3 45.2 29.7 -28.6 -21.4

Top42 Best 64.1 59.5 71.7 66.6 73.8 73.8 61.9 61.9
Difference 46.8 -1 9 46.7 -16.7 49.2 -9.5 43.3 -1 9

28.4 21.4 -23.8

-
A-I6

k d b a c t : Th*s.urus

I 85

1 -

i -

I 80

3
= 75

L 70

65

A

I

5 15 20 25 M 10
PncisiDn

Figure 1. Recall, Precision for All
Behaviors and IR Methods.

Separation between Relevance of Lmks and False Positives

0 8

0 7

3 0 6
c

0 5

0 4

2 0 3

0 2

0 1

0

0

E

P
-

0 1 2 3 1 5 6 7 8

lhntfon

+-TF-IDF. T ~ I 1 + mWuNs. TO^ 1 -F-IDF. T ~ I 2 * m-M, TOP: - - - - - - - , . - - -.-- - - -
Figure 2. Separation Between Average Relevance of

Links and False Positives.

Average Relevances: Thesaunrr, Top 2

0 1 5 2 3 4 6 7

nmtlon

Figure 3. Average. Relevances: Thesaurus, Top 2.

12

10

8

a
f 6

4

2
I b

0 - I , I

Figure 4. Lag for TF-IDF Tests.

I ----C Top 1 -Top 2 .-.k ".Top 3 - -0 - -Top 4 I
--

Figure 5. Lag for Thesaurus Retrieval Tests.
? Above 0.1. A candidate link was thrown out if its

Within 0.5. For each high-level requirement, the
relevance of each candidate link was compared with
the relevance of the top candidate link. The candidate
link was retained If$ its relevance was within 0.5 of
the relevance of the top link.
Top 42. For each high-level requirement i the top ki
candidate links were retained, where ki is the number
of true links for i in the answer set, This way, the
filtered answer set contained 42 (or fewer) candidate
links distributed exactly as in the answer set.

Table 3 summarizes the results of applying different filters
to the candidate link lists. For each filter and for each test
run, the best precisionhecall pair had always been
achieved on the last iteration of the experiment - a
contrast with the results without filtering. For each filter,
the table also contains the differences in percentages for
recall and precision between the list with no filtering and
the list obtained by applying the filter. As evidenced in the

I G I G V U I W WdS UGlVW V.I.

-

?

A- 17

table, the improvement in precision is significant for most
filter-IR algorithm-behavior combinations. For tf-idf
retrieval, Above 0.1 and Within 0.5 filters produce
precision of 35-50%, with typically a two-fold increase
from the “vanilla” list. At the same time, recall suffers a
significant (20-42%) decrease, with the only notable
exception being Above 0. I for Top 2 behavior (a drop of
11.9%). Top 42 filter, as expected, shows even bigger
improvement in precision, with the drop in recall being
around 14-17% for all cases but Top 1 . Notice that for this
filter, the precision is expected to be equal to recall, or
slightly exceed it if the size of the filtered list of candidate
links is smaller than 42. More importantly, for the simple
thesaurus retrieval, both Above 0.1 and Top 42
demonstrate an increase in precision with only moderate
penalty in recall. The best results were obtained for Top 3
behavior where for both filters the decrease in recall was
less than IO%, while the increase in precision was over
50% for Above 0. I and exactly 300% for Top 42.

Filtering the lists of candidate links is one of the ways to
study the inner structure of the lists of candidate links: the
filters work well when disproportionately many “bottom”
candidate links are false positives. Thus, the better the
degree of separation between the true links and the false
positive links in the lists, the more effective the filters will
be in increasing precision without compromising recall.
We have therefore also used other metrics to study our
progress in the degree of separation in the lists generated.

Figure 2 shows the changes in the DiffAR metric: the
difference in average relevances between the true links
(ART) and false positives (ARF). Intuitively, the larger
the difference, the more likely it is that most of the true
links will be at the top of the candidate link lists for high-

difference between ART and A M is around 0.2 at iteration
0 for both tf-idf and simple thesaurus retrieval algorithms.
At subsequent iterations for both retrieval algorithms and
all behaviors, DiYAR grows significantly ranging from
0.489 to 0.758 at the last iterations. In most cases, the
value of ART monotonically grows from iteration to
iteration. At the same time, the value of ARF drops by
about one half on the first iterations of each test, then
slowly %rows back towards its original value (around 1.11,
sometimes slightly exceeding it. Figure 3 shows the
progress of ART and ARF metrics for simple thesaurus
retrieval with Top 2 behavior.

While ART, ARF and DiffAR measure the quantitative
separation between true links and false positives, Lug is a
measure of qualitative separation. Lug is defined for each
true link in the list as the number of false positives for its
high-level requirement that have a higher relevance (i.e.,
the number of false positives that are higher up in the list).
The Lug of a list of candidate links is the average lug of

. - - _ _ _ - ---. ---- -, _-- --.-, ---

its true links. Note that when Lug=0, total separation of
links has been achieved: all true links appear higher up in
the lists of candidate links than all false positives. Figures
4 and 5 show the progress of the Lug measure for tf-idf
and thesaurus retrieval tests respectively. It can be
observed that in all experiments Lug behaved in a similar
manner. For both tf-idf and thesaurus retrieval, Lug starts
at just above 6. During the first 1-2 iterations, Lug grows,
and for some experiments can go as high as 10. But at
subsequent iterations, Lug drops significantly, and in all
but one experiment, finishes under 3. High-interaction
behaviors (Top 3 and Top 4) appear to produce better
(smaller) Lugs: the final iterations of these methods for tf-
idf give Lugs of 2.28 and 1.13, while for thesaurus
retrieval they are 1.47 and 2.2 1.

3.4 Discussion of results
During the tests we have established that for both of the

IR methods, using relevance feedback mechanisms
consistently improves recall by just under 20%. We have
found that precision also improves, occasionally by as
much as 100%. But, because the starting precision is
rather small, the improvement is not significant in absolute
numbers. However, we found that application of filtering
techniques is promising. In many cases, filtering resulted
in drastic improvement in precision, while the decrease in
recall was not very significant. Our tests have also
produced evidence that with each iteration, the generated
lists of candidate links tend to be of better overall quality:
true links rise to the top, while false positives tend to sink
to the bottom. Also, the gap between relevance weights
for true links and false positives grows from insignificant
(0.02) to large (0.6-0.8 in most cases). This suggests that
analyst e m r ~ 111 proviaing relevance reeabactc pays on: it
is possible to generate lists of candidate links with high
precision and high recall, saving analyst time during the
final verification of the trace.
4. Related work

There are two areas of interest: requirements tracing
and IR as it has been applied to the problem of
requirements analysis. Each is addressed below.

4.1. Requirements tracing

We have been tackling the requirements tracing problem
for many decades. In 1978, Pierce [I61 designed a
requirements tracing tool as a way to build and maintain a
requirements database and facilitate requirements analysis
and system verification and validation for a large Navy
undersea acoustic sensor system.

A- 18

Hayes et a1 [lo] built a front end for a requirements
tracing tool called the Software Automated Verification
and Validation and Analysis System (SAVVAS) Front
End processor (SFEP). This was written in Pascal and
interfaced with the SAVVAS requirements tracing tool
that was based on an Ingres relational database. SFEP
allows the extraction of requirement text as well as the
assignment of requirement keywords through the use of
specified linkwords such as shall, must, will, etc. These
tools are largely based on keyword matching and
threshold setting for that matching. Several years later the
tools were ported to hypercard technology on Macs, and
then to Microsoft Access and Visual Basic running on
PCs. This work is described by Mundie and Hallsworth in
[15]. These tools have since been further enhanced and
are still in use as part of the Independent Verification and
Validation (IV&V) efforts for the Mission Planning
system of the Tomahawk Cruise Missile as well as for
several NASA Code S science projects.

Abrahams and Barkley, Ramesh, and Watkins and Neal
[l , 17, 221 discuss the importance of requirements tracing
from a developer's perspective and explain basic concepts
such as forward, backward, vertical, and horizontal
tracing. Casotto [6] examined run-time tracing of the
design actvity. Her approach uses requirement cards
organized into linear hierarchical stacks and supports
retracing. Tsumaki and Morisawa [2 13 discuss
requirements tracing using UML. Specifically they look
at tracing artifacts such as use-cases, class diagrams, and
sequence diagrams from the business model to the
analysis model and to the design model (and back) [21].

There have also been significant advances in the area of
requirements elicitation, analysis, and tracing. Work has

analysis of phoneme occurrences to categorize and
analyze requirements and other artifacts [19]. Bohner's
work on software change impact analysis using a graphing
technique may be useful in performing tracing of changed
requirements [4]. Anezin and Brouse advance backward
tracing and multimedia requirements tracing in [2,5].

Cleland-Huang et a1 [7] propose an event-based
traceability technique for supporting impact analysis of
performance requirements. Data is propagated
speculatively into performance models that are then re-
executed to determine impacts from the proposed change.
Ramesh et a1 examine reference models for traceability.
They establish two specific models, a low-end model of
traceability and a high-end model of traceability for more
sophisticated users [18]. They found that a typical low
end user created traceability links to model requirement
dependencies, to examine how requirements had been
allocated to system components, to verify that
requirements had been satisfied, and to assist with change
control. A typical high-end user, on the other hand, uses

.~ - ~.

traceability for full coverage of the life cycle, includes the
user and the customer in this process, captures discussion
issues, decision, and rationale, and captures traces across
product and process dimensions [181.

4.2 IR in requirements analysis

Recently, a number of research groups has considered
using Information Retrieval methods for various problems
in requirements analysis. Two research groups, in
particular, worked on the requirements-to-code tracebility.
Antonio, Canfora , De Lucia and Merlo [3] considered
two IR methods: probabilistic IR and vector retrieval (tf-
idf). They have studied the traceability of requirements to
code for two datasets. In their testing, they retrieved top i
matches for each requirement for i=1,2, ..., and computed
precision and recall for each i. Using improved processes,
they were able to achieve 100% recall at 13.8% precision
for one of the datasets. In general, they have achieved
encouraging results for both tf-idf and probabilistic IR
methods. Following [3], Marcus and Maletic [I31 applied
latent semantic indexing (LSI) technique to the same
problem. In their work they used the same datasets and the
same retrieval tests as [3]. They have shown that LSI
methods show consistent improvement in precision and
recall and were able to achieve combinations of 93.5%
recall and 54% precision for one of the datasets.
While [3] and [131 studied requirements-to-code
traceability, in [I 11 we have addressed the problem of
tracing requirements between different documents in the
project document hierarchy. In the preliminary study [I I]
we have implemented three methods: tf-idf, tf-idf with key
phrases and tf-idf with simple thesaurus and have reported

requirements documents. In our study, retrieval with
simple thesaurus outperformed other methods on our test
dataset, producing recall of 85% with precision 40%.
This work continues the research started in [1 11. Here, we
extend the baseline tf-idf and thesaurus retrieval methods
with analyst relevance feedback processing capability.

5. Conclusions and future work

~~ , ---o --- - - I-_ ---- --- ---- --

In this paper we have studied the effect of relevance
feedback processing on the success of IR methods for
requirements tracing. We have found that taking into
account even limited user feedback results in consistent,
and at times, significant increases both in precision and
recall on subsequent iterations.
While the results of the study are encouraging, they also
show clear avenues for improvement. Among them we
identify the following:
a. implementation of more intricate IR algorithms;

A- 19

b.

c.
W e note that current study, despite using student
volunteers in experiments, was an objective evaluation of
the quality of results produced by the IR and relevance
feedback. algorithms. In practice, however, it will be up to
human analysts to supply relevance feedback, and as such,
it is impossible to envision analysts to be 100% correct in
their decisions. Therefore, in order to make the
requirements tracing tool useful for IV&V analysts, we
need to study how they tend to work with the candidate
link lists produced by the software.

a comparative study of different relevance feedback
techniques;
study of the work of analysts in requirements tracing.

Acknowledgments

Our work is funded by NASA under grant NAGS-1 1732. Our
thanks to Ken McGill, Tim Menzies, Stephanie Ferguson, Pete
Cerna, Mike Norris, Bill Gerstenmaier, Bill Panter, the
International Space Station project, Mike Chapman and the
Metrics Data Program, and the MODIS project for maintaining
their website that provides such useful data. We thank Hua
Shao and James Osborne for assistance with the tf-idf
algorithm. We thank hies Chemmannoor, Ganapathy
Chidambaram, Ramkumar Singh S, and Rijo Jose Thozhal for
their assistance.

6. References
[l] Abrahams, M. and Barkley, J., "RTL Verification

Strategies,'' IEEE WESCON/98, 15 - 17 September 1998,

[2] Anezin, D., "Process and Methods for Requirements
Tracing (Software Development Life Cycle)," Dissertation,
George Mason University, 1994.

L j J Antoniol, ti., Canfora, Ci., Casazza, Ci., De Lucia, A., and
Merlo, E. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. 10, October 2002,970-983.

[4] Bohner, S., "A Graph Traceability Approach for Software
Change Impact Analysis," Dissertation, George Mason
University, 1995.

[5] Brouse, P., "A Process for Use of Multimedia Information
in Requirements Identification and Traceability,"
Dissertation, George Mason University, i992.

[6] Casotto, A.. Run-time requirement tracing, Proceedings of
the IEEEIACM International Conference on Computer-
aided Design, Santa Clara, CA, 1993.

[7] Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K.; Hu,
H., Xia, J. (2002) Automating speculative queries through
event-based requirements traceability. Proceedings of the
IEEE Joint International Requirements Engineering
Conference (K'OZ), Essex, Germany, 9-13 September,
2002, pages: 289-,296.

pp. 130-134.

[8] Baeza-Yates, R. and Ribeiro-Neto, B. Modern Information
Retrieval, Addison-Wesley, 1999.

[9] Frakes, W. and Baeza-Yates, R. (Eds.), Information
Retrieval: Data Structures and Algorithms, Prentice Hall,
1992.

[101 Hayes, J. Huffman. Risk reduction through requirements
tracing. In The Conference Proceedings of Software
Quality Week 1990, San Francisco, California, May 1990.

[1 11 Hayes, J. Huffman; Dekhtyar, A. Osboume, J. "Improving
Requirements Tracing via Information Retrieval," accepted
to the International Conference on Requirements
Engineering, to be presented in Monterey, California,
September 2003.

[121 Level 1A (L1 A) and Geolocation Processing Software
Requirements Specification, SDST-0594 GSFC SBRS,
September 11, 1997.

[131 Marcus, A.; Maletic, J. "Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing," Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, Portland,
Oregon, 3 - 10 May 2003, pp. 125 - 135.

[141 MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS,
November 10, 1997.

Requirements analysis
using SuperTrace PC. In Proceedings of theAmerican
Society of Mechanical Engineers (ASME) for the
Computers in Engineering Symposium at the Energy &
Environmental Expo 1995, Houston, Texas.

[161 Pierce, R. A requirements tracing tool, Proceedings of the
Software Quality Assurance Workshop on Functional and
Performance Issues, 1978.

I1 71 Ramesh. R.. "Factors Influencinp Reauirements
I raceaoimy rracnce," Lommunicauons 01 me ALM,

December 1998, Volume 41, No. 12 pp. 37-44.

[ISIRamesh, B.; Jarke, M. Toward reference models for
requirements traceability; IEEE Transactions on Software
Engineering, Volume 27, Issue I, January 2001,
page(s): 58 -93.

[191 Savvidis, I. "A Multistrategv Framework for Analyzing
System Requirements (Software Development),"
Dissertation, George Mason University, 1995.

[20]Sparck Jones, K. and Willet, P. Readings in Information
Retrievql Morgan Kaufmann Series in Multimedia
Information and Systems, Morgan Kaufmann, 1997.

[21]Tsumaki, T. and Morisawa, Y. "A Framework of
Requirements Tracing using UML," Proceedings of the
Seventh Asia-Pacific Software Engineering Conference
2000,s - 8 December 2000, pp. 206 - 213.

Tracing," IEEE Soflare, Volume 1 I, Issue 4, July 1994,

[151 Mundie, T. and Hallsworth, F.

[22] Watkins, R. and Neal, M. "Why and How of Requirements

pp. 104-106.

A- 20

University of Kentucky Technical Report TR 392-04
Helping Analysts Trace Requirements: An Objective Look

Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram, Sara Howard
Computer Science Department

University of Kentucky
hayes@cs. u@. edu, dekhtyaracs. uky. edu, shzrt2@uky. edu, sehowa2@u@. edu

Abstract
This paper addresses the issues related to improving the overall
quality of the requirements tracing process for independent
Verification and Validation analysts. The contribution of the
paper is threelfold: we define requirements for a tracing tool
based on analyst responsibilities in the tracing process; we
introduce several new measures for validating that the
requirements have been satisfied; and we present a prototype
tool that we built, RETRO (Wquirements TRacing On-target),
to address these requirements. We also present the results of a
study used to assess RET.RO’s support of requirements and
requirement elements that can be measured objectively.

Research

1. Introduction

The hndamental purpose of Verification and Validation
(V&V) and Independent Verification and Validation
(IV&V) is to insure that the right processes have been
used to build the right system. To that end, we must
verify that the approved processes and artifacts are
guiding development during each lifecycle phase as well
as validate that all requirements have been implemented at

matrix (RTM) is a prerequisite for both of these. Though
Computer-Aided Software Engineering tools such as
DOORS [23], RDD-100 [12], and Rational Requisitepro
[20] can assist, we have found that often developers do
not build the RTM to the proper level of detail or at all.
V&V and lV&V analysts are faced with the time
consuming, mind numbing, person-power intensive, error
prone task of “after the fact” requirements tracing to build
and maintain the KTM. Examples of ‘V’&ViIV&V
activities that can’t be undertaken without an RTM
include, but are not limited to: verification that a design
satisfies the requirements; verification that code satisfies a
design; validation that requirements have been
implemented and satisfied; criticality analysis; risk
assessment; change impact analysis; system level test
coverage analysis; regression test selection. V&VlIV&V
can be viewed as the backbone of safety-critical, mission-
critical, and Critical-Catastrophic High Risk (CCHR)
systems. Similarly, the RTM can be viewed as the
backbone of V&V/IV&V.

UIG G11U VI LllC I I I C G ~ G I G . A IGqUllGll lGllW: U X G i l D l l l l y

Requirements tracing consists of document parsing,
candidate link generation, candidate link evaluation, and
traceability analysis. As an example, consider
requirements in a high level document such as a System
Specification being traced to elements in a lower level
document such as a Software Requirement Specification.
Generally, after the documents have been parsed and
requirements have been extracted from the two document
levels, an analyst will’ manually read each high level
requirement and low-level element and assign keywords to
each. A keyword-matching algorithm is then applied to
build lists of low-level elements that may potentially
satisfj a given high-level requirement. These are called
candidate links. There are two commonly accepted
metrics in evaluating candidate links: the percentage of
actual matches that are found (recalC) and the percentage
of correct matches as a ratio to the total number of
candidate links returned (precision). The analyst reviews
the candidate links and determines which are actual links
(candidate link evaluation). Finally, after tracing is
complete, the analyst generates reports of the high level
reouirements that dn not have children and the Inw IPVPI
elements that ao not nave parents (traceability analysis).

Current approaches to after-the-fact tracing have
numerous shortcomings: they require the user to perfonn
interactive searches for potential linking requirements or
design elements, they require the user to assign keywords
to all the elements in both document levels prior to
tracing, they return many potential or candidate links that
are not correct, they fail to return correct links, and they
do not provide support for easily retracing new versions of
documents. To ensure requirement completion and to
facilitate change impact assessment, a method for easy
“after-the-fact” requirements tracing is needed.

Previously, we focused solely on the problem of
generating candidate links, discussed in [1 11.
Specifically, we showed that information retrieval (IR)
methods were effective and efficient when used to
generate candidate link lists. Our focus has now
broadened to the overall requirements tracing process.
The penultimate goal of this NASA-funded research is to
develop an efficient, effective tracing tool that makes the

A- 1

best use of the analyst’s time and expertise. To that end,
this paper provides three contributions: we investigate the
analyst responsibilities in performing tracing; we derive
tool requirements from these; and, we present a prototype
tool, RETRO, and evaluate it with respect to the
requirements.

The paper is organized as follows. Section 2 presents
the requirements for an effective requirements tracing
tool. Section 3 discusses our tool and how it satisfies the
requirements of Section 2. Section 4 discusses the results
obtained from evaluation. Related work in requirements
tracing is presented in Section 5. Finally, Section 6
presents conclusions and areas for future work.

2. Requirements for an effective
requirements tracing tool

To set the stage for our work, we must first understand
the responsibilities of an analyst who has been tasked to
perform a requirements trace. The analyst is required to:
(a) identify each requirement; (b) assign a unique
identifier to each requirement; (c) for each requirement to
be traced (say for example from a high level document to
a low level document), locate all children requirements
present in the lower level document; (d) for each low level
requirement, locate a parent requirement in the high level
document; (e) examine each high level traced requirement
and determine if it has been completely satisfied by the
low level requirements that were selected as links; (0
prepare a report that presents the traceability matrix (low
level requirements traced to high level requirements); and
(g) prepare a summary report that expresses the level of
traceability of the document pair (that is, what percentage
VI LIIG I l l&l I G V b I IGyuIIGlIIGIlLJ W b I b ~UlllylrLrly J U L l J l l b U ,

what percentage of low level documents had no parents,
etc.).

Let us next examine how automation may facilitate these
responsibilities. A tool could easily assist the analyst in
the identification and subsequent extraction and “tagging”
of requirements [(a), (b)]. Similarly, generation of
requirements traceability matrix reports and traceability
summary reports lends itself well to automation [(f), (g)].

SuperTracePlus (STP) [10,161, and commercial tools
already address these items. The remaining items are of
greater interest and importance to researchers and
practitioners. Items (c)-(e) conceivably require the
analyst to examine every low level requirement for each
high level requirement. Even in a small document pair
that consists of 20 high level requirements and 20 low
level requirements, an analyst may examine 400 candidate
links.

If we build a tool to automate items (c) - (e), the analyst
will still have certain critical responsibilities. These

In lubb, a number of proprietary to~!s, such as

include evaluating candidate links; making decisions on
whether or not candidate links should be accepted or
rejected; making decisions on whether or not to look for
additional candidate links; making decisions on whether
or not a requirement has been satisfied completely by its
links; and deciding if the tracing process is complete.
What can be automated, as shown in [l l] , is the
generation of candidate links to address items (c) and (d).
With this in mind, we move to the identification of the
desirable attributes of an effective tracing tool.

Most research in the area of requirements tracing has
focused on models of requirements tracing [I91 or has
looked at recall and precision to assess the accuracy of the
applied linking algorithms [3, 141. To our knowledge,
there has not been work published that details the
requirements for an effective requirements tracing tool. In
addition to specifying such requirements, we provide a
validation mechanism for each requirement, and then in
Sections 3 and 4 demonstrate that our tracing tool satisfies
the requirements we have addressed to date. Note that we
have chosen to define the requirements in an informal,
textual narrative format. We do not claim that these
requirements possess the quality attributes that should be
present in formal software requirements. Rather, we offer
them as a starting point for discussion with other
researchers.

From the perspective of a development manager or a
safety manager (in the case of a safety-critical system), the
most important attribute that a requirements tracing tool
can possess is that its final results are believable and can
be trusted. Similarly, the analysts who use the tool should
have confidence in the candidate link lists provided by the
software (addressing items (c) and (d)). Lack of this

skarching for additional candidate links. We refer to this
attribute as “believability,” and it constitutes the first
requirement.
Reauirement 1:
Specification:
“Believability” - The requirements tracing tool shall
generate candidate links and shall solicit analyst feedback
and shall re-generate candidate links based on the
feedback such that the final trace shall very accurately
reflect the theoretical “true trace.”
Believability is constituted of three sub-requirements or
sub-elements: accuracy, scalability, and utility. Each are
discussed below.
Accuracy: The extent to which a requirements tracing tool
returns all correct links and the extent to which the tool
does not return incorrect links.
Scalability: The extent to which the requirements tracing
tool is able to achieve accuracy for “small” tracesets as
well as “large” tracesets. In this context, we define a
“small” traceset to constitute 3000 combinatorial links or

.

A- 2

less. For example, a traceset consisting of 20 high level
requirements and 50 low level requirements would have
20 x 50 = 1000 combinatorial links. Any traceset with
more than 3000 combinatorial links is considered large.
Utility: The extent to which an analyst believes the tool
has helped to achieve good trace results. If the analyst has
(justified) confidence in the accuracy and scalability of the
tool, the tool will possess utility for the analyst. In
addition to analyst belief about accuracy and scalability,
other items can impact utility. This is a very subjective
item, and we are still in the process of elucidating its sub-
elements. Thus far we have defined Operability and
Process Enforcement. Operability is the capability of the
software product to enable the user to operate and control
it [4]. Process Enforcement refers to the tool
implementing tracing in such a way that the analyst is
guided through the process.
Validation mechanism:
The standard measures of accuracy are recall and
precision. Accuracy can be measured objectively, but
only when we have the theoretical “true trace” available.
Even when we do not have such an “answer set” a priori,
we can build an RTM using the tool, capturing the
candidate links returned at each stage. Then, we can
compare the candidate links supplied by the tool at each
stage to the final RTM (treating it as the answer set).
For scalability, we must examine the tool’s results for both
small and large tracesets to determine that the accuracy
has not been significantly degraded. Validation of Utility
requires subjective measures and hence a separate
experimental design. In addition, we must first establish
accuracy and scalability before progressing to a subjective
study, thus ensuring that the tool performs in such a way

left for future research.
Discussion:
Believability is a high level, overarching requirement.
Utility is important because in any tracing exercises other
than controlled experiments, the theoretical “true trace”
will not be known. Therefore, an analyst will decide
whether candidate links are correct or not and will decide
whether to search for additional candidate links. The
analyst must feel confident that good results have been
achieved by using the tool.

Scalability will not be addressed in this paper as we do
not currently have large tracesets with a “true trace.”
Accuracy will be evaluated, though. Recall is more
important in tracing than precision because we do not
want analysts to have to search for additional candidate
links. We also want precision to be as high as possible.
But note that precision values can be a bit misleading. For
example, 50% precision means the existence of one false
positive for each true link, which would be relatively easy
for the analyst to deal with. Improvement beyond 50%

rh,+ +I.-”,. :,. - h--:- C-.. - - - I - . - - ---CJ _I__ -:- - L . A - -

does not provide as much benefit to the analyst as for
example improving fiom 10% to 33% (which corresponds
to improving from one true link out of 10 to one true link
out of three candidates). Thus, drastic improvements in
precision occur only at low percentages. The true
measure of the effectiveness of a tracing tool lies in its
ability to help an analyst find the correct links, as easily as
possible. In earlier studies [1 I], we found that an analyst
using the STP requirements tracing tool actually ended up
with a worse final answer than the tool had originally
proposed. If the analyst throws away good links, recall
will decrease. If the analyst keeps bad links, precision
will decrease. It is important that the tool prompts/assists
the analyst to make the right choices (addressing items (c)
and (d)). To that end, we have requirement 2,
“discemability .”
Requirement 2:
SPecification:
“Discernability” The requirements tracing tool shall
generate candidate links and display their similarity
measures in such a way to make it easy for the analyst to
discern true links (from the theoretical “true trace”) from
false links (candidate links that are not really links).
Validation mechanism:
There are four aspects to this requirement. In general, we
want to ensure that the software communicates
information (such as requirement text), process flow (such
as what to do next), and results in a manner that facilitates
the tracing process. We refer to this as communicability.
In addition, we want to ensure that, as the stages of tracing
proceed, good links (true links) rise to the top of the
candidate link list and that bad links (false links) fall to the
bottom. And we want to ensure that the similarity

line between true and false links. To that end, we define
objective measures for all the items above except
communicability. “Good links rising” and “bad links
sinking” are measured using DrffAR and Lag, while the
existence of a cutoff is studied using different filtering
techniques on the candidate link lists. These measures are
formally defined in Section 4.
Discussion:
This requirement must be satisfied to support the
satisfaction of Requirement 1. As has been suggested
above, requirements tracing is an iterative process. An
analyst will examine a subset of the candidate links and
then determine if the links are good or not. This
information, even for a small number of candidate links, is
very valuable and should be fed back into the algorithms
to support the generation of more accurate candidate links.
If the tool does not provide the candidate links in a
manner that facilitates discernment, the analyst will get
frustrated with the tool and will not be able to efficiently

I. ,. , . ,. . n . . r l M. . - - - -. .. - . .

A- 3

complete the task. That leads us to our final requirement,
“endurability.”

Rea uirement 3:
Specification:
“Endurability:” The requirements tracing tool shall
generate candidate links and shall solicit analyst feedback
and shall re-generate candidate links based on the
feedback such that the process of requirements tracing is
not arduous.
Validation mechanism:
Part of Endurability can be measured objectively by
examining the time it takes to complete a tracing project
using the tool. However, Endurability also refers to
subjective satisfaction of the analyst with the tool and
requires subjective measures and a separate experimental
design. This study is left for future research.
Discussion:
In general, requirements tracing is a very time consuming,
arduous process, even when using a tool. We strive to
decrease the tedium of the tracing experience for the
analyst (addressing items (c) - (e)). This is a subjective
item, tying in with usability. A separate study is planned
to assess analyst attitude toward our tracing tool.

3. Effective requirements tracing with
RETRO

3.1 Why use Information Retrieval?

The problem of requirements tracing boils down to
determining, for each pair of requirements from high- and

“similar.” Stated as such, requirements tracing bears a
striking similarity to the standard problem of Information
Retrieval (IR): given a document collection and a query,
determine which documents from the collection are
relevant to the query. In the tracing scenario, high-level
requirements play the role of queries, while the “document
collection” is made up of low-level requirements (these
roles are switched if back-tracing is desired). The key to
understanding whether IR methods can aid requirements
tracing lies in examining the concept of requirement
“similarity.” This concept is used by the analysts to
determine the trace. We must see if requirements
similarity can be modeled, or at least approximated, by the
document relevance notions on which different IR
algorithms rely.

The major difference in the similarity concepts used by
analysts and the measures used in IR algorithms is that
human analysts are’ not limited in their decisions by purely
arithmetical considerations. A human analyst can use any
tool available in her arsenal to determine the trace, and

.

A- 4

that may include “hunches,” jumping to conclusions,
and/or ignoring assignments prescribed by any specific
methodology. Such diversity of sources for human
decision-making can be both a blessing and a bane to the
requirements tracing process. On one hand, it may lead to
discovery of hard-to-find matches between the
requirements. On the other hand, human analysts do make
errors in their work. These errors may be explicit, the
analyst discards correct links and keeps incorrect ones,
and implicit, the analyst does not notice some of the true
links between the documents. Similarity (relevance)
measures computed by IR algorithms are not prone to
errors in judgment. But they may fail to yield connections
that humans might notice despite differences in text.

Even taking this observation into account, there is still
enough evidence to suggest that IR methods are
applicable. Indeed, the actual procedures employed by an
IR algorithm in RETRO and by the analyst, working, for
example with the STP tool [10,16] are very similar. In
both cases, the lists of requirements from both document
levels are scanned and for each requirement a
representation based on its text is chosen. After that, in
both instances, matching is done automatically, and the
analyst then inspects the candidate links.

3.2 RETRO

In contrast with such comprehensive requirements
management tools as STP [lo, 161, RETRO
(REquirements TRacing On-target) is a special-purpose
tool, designed exclusively for requirements tracing. It can
be used as a standalone tool to discover traceability
matrices. It can also be used in conjunction with other

information is exported in a simple, easy-to-parse XML
form. The overall look of RETRO GUI (Win32 port) is
shown in Figure 1.

r’ -J”’ ----.-- -...-... ” --......-. ... ” ‘..l””””-”w ..’“”’*

. .
.- .

Figure 1. A screenshot of RETRO.

At the heart of RETRO lies the IR toolbox (C++): a
collection of implementations of IR methods, adapted for
the purposes of the requirements tracing task. Methods
from this toolbox are accessed from the GUI block (Java)
to parse and analyze the incoming requirements
documents and construct relevance judgments. The
Filtering/Analysis component (C++) of RETRO takes in
the list of candidate links constructed by any of the
toolbox methods and prepares a list to be shown to the
analyst. This preparation may involve the application of
some cleaning, filtering and other techniques. The GUI of
RETRO guides the entire requirements tracing process,
from setting up a specific project, to going through the
candidate link lists. At the top of the screen, the analyst
sees the list of high level requirements (left) and the list of
current candidate links for it, with relevance judgments
(right). In the middle part of the interface, the text of the
current pair of requirements is displayed. At the bottom,
there are controls allowing the analyst to make a decision
on whether the candidate link under consideration is,
indeed, a true link. This information is accumulated and,
upon analyst request, is fed into the feedback processing
module (C++). The module takes the results of analyst
decisions and updates the discovery process consistent
with the changes. If needed, the IR method is re-run and
the requirements tracing process proceeds into the next
iteration.

3.3 Information Retrieval methods in RETRO

The IR toolbox of RETRO implements a variety of
methods for determining requirement similarity. For this
studv we have used two IR algorithms imdemented
previously I I 1: y-iaj vector retrievai ana vector retrieval
with a simple thesaurus. To process feedback we have
used the Standard Rochio [9] method for the vector
model. The methods used are briefly described below.

3.3.1 Tf-Idf model. Standard vector model (also known
as tf-idf model) for information retrieval is defined as
follows. Let V = {kl, ...,W} be the vocabulary of a given
document collection. Then, a vector model of a document
u" is a

computed as w, = tJ; (d) idJ;. Here @(d) is the so-
called term frequency: the frequency of keyword ki in the
document d. and id$, called inverse documentji-equency is

tw;, ..., .wy of ~ey-wor& WeigfLts, -&.Xere . ~ i .. is

I .

computed as idA = log, [- d;; J, where n is the number

of documents in the document collection and # is the
number of documents in which keyword ki occurs. Given
a document vector d=(wl, ..., wN) and a similarly
computed query vector q=(q1, ...,qN) the similarity

A- 5

between d and q is defined as the cosine of the angle
between the vectors:

N

C w i 'qi

N
sim(d, q) = cos(d, q) = , :='

i=l

3.3.2 Tf-Idf + Simple Thesaurus. The second method
used in [l 11 extends tf-idf model with a simple thesaurus
of terms and key phrases. A simple thesaurus T is a set of
triples <t, t ', W , where t and t ' are matching thesaurus
terms and a is the similarity coefficient between them.
Thesaurus terms can be either single keywords or key
phrases - sequences of two or more keywords. The vector
model is augmented to account for thesaurus matches as
follows. First, all thesaurus terms that are not keywords
(i.e., thesaurus terms that consist of more than one
keyword) are added as separate keywords to the
document collection vocabulary. Given a thesaurus
T={<ki, kj, uiJ>}, and documentlquery vectors
d=(wI, ..., wN), q=(qI, ..., qN), the similarity between d
and q is computed as:

N

x w i '4, + ' q j +wj .q i)
i=l &i,kj,a;,>ET

sin(d, q) = cosq, q) = I hl

3.4 Incorporating relevance feedback

Relevance feedback is a technique to utilize user input

Relevance feedback techniques for tf-idf methods adjust
the keyword weights of query vectors according to the
relevant and irrelevant documents found for them, as
supplied by the user. More formally, let q be a query
vector, and Dq be a list of document vectors returned by
some IR method given q. Further, assume that D has two
subsets: Dr of size R of documents relevant to q and Dirr
of size S of irrelevant documents that have been provided
by the user, Note that Dr and Dirr are disjointj but do not
necessarily cover the entire set 04. We use Standard
Rochio [9] feedback processing method:

.- -_-- r- - . - I--- --_-____-_--- I- -._- .---.- .I_ I'o ".

Intuitively, query q is adjusted by adding to its vector a
vector consisting of the document vectors identified as
relevant, and subtracting from it the sum of all document
vectors identified as false positives. The first adjustment is
designed to potentially increase recall. The second

adjustment can potentially increase precision. The
constants a , B, ? in the formulas above can be adjusted in
order to emphasize positive or negative feedback as well
as the importance of the original query vector (in our tests
all three values were set to 1). Once the query vectors
have been recomputed, the selected IR algorithm is re-run
with the modified query vectors. This cycle can be
repeated until the user is satisfied with the results.

4. Evaluation

4.1 Study design

The purpose of our current study is to see whether
RETRO satisfies the requirements specified in Section 2.
We notice that all three major requirements have two
components: objective, that can be measured by running
tests on the tool, and subjective, examining user
interaction with it. This study validates parts of the
requirements that can be measured objectively. A study of
the use of the tool by analysts for the purpose of
determining its usability is planned next. In particular, in
this study, we concentrate on determining the accuracy
and discernability of the results of the analysis.
To assess the accuracy and discernability of requirements

tracing with RETRO, we performed tests on tf-idf and
thesaurus approaches, as described in Section 3.3. We
used a modified dataset from [1 I] based on open source
NASA Moderate Resolution Imaging Spectroradiometer
(MODIS) documents [13,151. The dataset contains 19
high level and 49 low-level requirements. The trace for
the dataset was manually verified and 42 correct links
were found.

process, analysts provide correct information to the tool.
That is, both true links and false positives, when
discovered are marked as such. At the beginning of each
test, the traceset was loaded into RETRO and a particular
IR method (tf-idf, or thesaurus) was selected. For each
method, four different feedback strategies or behaviors,
called Top I, Top 2, Top 3 and Top 4 were tested. The
Top i behavior meant that at each iteration, we simulated

links from the list for each high-level requirement. For
example, for each high level requirement, Top 1 behavior
examined the top candidate link suggested by the IR
procedure that had not yet been marked as true. If the link
was found in the verified trace, it was marked as true,
otherwise - as false. After repeating the Top i relevance
feedback procedure for each high level requirement, the
answers were submitted to the feedback processing
module. At this poid, the Standard Rochio procedure was
used to update query (high-level requirement) keyword

... -.- ---., .." ..-. " YIU ..--"'b ..I- *%.-..VU"..

correct ana!yst feedhack for the top i unmwked czndidzte

weights, and to submit the new queries to the IR method.
The process continued for a maximum of eight iterations
or until the results had converged.
To check the accuracy of the results, we measured

precision and recall of the candidate link lists produced at
each iteration of the process.
To check discernability, we devised and computed a
number of measures that allow us better insight into the
evolution of the candidate link lists provided by RETRO
from iteration to iteration. As stated in Section 2, we want
to ensure that (a) true links rise to the top of the lists, (b)
false positives sink to the bottom of the lists, and that (c) a
reasonable cut-off is possible that separates the majority
of the true links from the majority of the false positives.
The metrics measuring the degrees to which (a) and (b)
were satisfied are:
A X : Average relevance of a true link in the list;
A X : Average relevance of a false positive in the list;
DiffAR = ART - ARl? the difference between average
relevances of true links and false positives; and
&: average number of false positives with higher
relevance coefficient than a true link.
To measure the ability to establish a cut-off, we have
examined a number of filtering techniques. A filtering
technique is a simple decision procedure that examines
each candidate link produced by the IR method and
decides whether to show it to the analyst. In our study, in
addition to the test run involving no filtering, we used the
following three filtering techniques:
Above 0.1: throw out a candidate link if its relevance is
below 0.1.
Within 0.5: For each high-level requirement, compare the

top candidate link. The candidate link is retained iff its
relevance is within 0.5 of the relevance of the top link.
Top 42. For each high-level requirement i, retain the top ki
candidate links, where ki is the number of true links for i.
The filtered answer set contained 42 (or fewer) candidate
links distributed exactly as in the answer set.

..1 *. * .. , . c . - ~ -~ c . - -

4.2 Results

We address accuracy followed by discernability. As
discussed above, recall and precision will be used to
assess accuracy. TThe precision and recall results obtained
in our tests are summarized in Table 1. The first column
indicates the iteration, with iteration 0 being the iteration
before the feedback. In each cell, precision is indicated
first followed by recall. For example, iteration 7, Top 3,
for Thesaurus method had precision of 24.6% and recall
of 80.9%. The maximal precision and recall achieved in
each experiment are highlighted and the maximal values

A- 6

for each retrieval method are also underlined. The results
are also visualized in Figure 2, which contains the
precisionhecall trajectories for all experiments, grouped
by the IR method used (top: tf-idf, bottom: simple
thesaurus).

The importance of the results ties back to the
requirement of believability in Section 2. The candidate
link lists generated using the thesaurus method are decent,
but are greatly improved with analyst feedback. Also,
improvements in recall are seen in early iterations (as
early as iteration 3) and with the analyst only providing
feedback on the Top 2 links. We feel that these accuracy
results should also contribute to utility and endurability.
Note that our shortcoming in recall is accounted for by a
few requirements for which the IR methods did not return
any true candidate links at iteration 0. This meant that
feedback methods could not improve as they could not
acquire positive feedback information.

It
doubles over six or seven iterations, but on iterations 1
and 2 it decreases before starting to increase again with
iteration 3. However, precision was improved without
much impact to recall by using filtering. Table 2
summarizes the results of applying different filters to the
candidate link lists. For each filter and for each test run,
the best precisionhecall pair was always achieved on the
last iteration of the experiment - a contrast with the results
without filtering. For each filter, the table also contains the
differences in percentages for recall and precision between
the list with no filtering and the list obtained by applying
the filter. As evidenced in the table, the improvement in
precision is significant for most filter---IR algorithm-
behavior combinations. An important observation is that

technique at some iteration does not preclude this link

Precision does not appear to improve as much.

vnmn. ro l n ,w.-A;&tm 1L.b G,, +h- I:-& L.. - C I A - - : - -
~ _.

I

0
1
2

3
4

5
6
7
8

from appearing again in a subsequent iteration. What this
means is that if we filtered out some good links originally,
they may reappear later with higher similarity measures.
Filtering also ties to discemability.

Recall that we use filtering to determine if there is
eventual separation between good and bad links in the
candidate link list, or the cutoff sub-element of
discernability. Our results show that for above 0.1 in Top
42 filters such separation is eventually achieved for most
of the behaviors, as precision increases drastically while
the decrease in recall is not large. For example, using
thesaurus retrieval for Top 3 behavior and above 0.1
filtering, precision is almost 40% with recall of 80%.

The other sub-elements of discemability examine
whether good links rise to the top of the list and bad links
sink to the bottom. Recall that we use DiflAR and Lug to
assess these. Figure 3 shows the changes in the DrffAR
metric: the difference in average relevances between the
true links (ART) and false positives (ARF) as the iterations
progress. Intuitively, the larger the difference, the more
likely it is that most of the true links will be at the top of
the candidate link lists for high-level requirements. Note
from the figure that the difference between ART and ARF
is around 0.2 at iteration 0 for both tf-idf and simple
thesaurus retrieval algorithms. At subsequent iterations €or
both retrieval algorithms and all behaviors, DrffAR grows
significantly, ranging from 0.489 to 0.758 at the last
iterations.

While DrffAR measures the quantitative separation
between true links and false positives, Lug is a measure of
qualitative separation. Lug is defined for each true link in
the list as the number of false positives for its high-level
requirement that have a higher relevance (Le., the number

a list of candidate links is the average Lug of its true I&,.
-CC-I . .,. ,I I . . 1 - - ..

Top 1

Tf-IDF Thesaurus
11.3%, 57.1% 12.2%, 64.2%

8.4%, 59.5% 9.4%, 69%

7.7%, 59.5% 8.3%,64.2%

9.2%, 66.6% 8.6%, 61.9%

~-

9.9%, 71.4% 10.6%, 71.4%

12.5%, 76.1% 12.5”/0,78.5%

15.3%,76.1% 14.8%, 76.1%

1 6%, 7 1.4%

173%, 73.8%

Table 1. Results of experiments: Precision and recall.

Top 2
Tf-IDF Thesaurus
11.3%,57.1% 12.2%,64.2%

6.9%. 59.5% 7.1%,66.6%

9.2%, 69% 9.9%, 73.8%

12.2%,73.8% 12.1%, 80.9%

15.1%,73.8% 15.7%, 833%

~ _ _ _ . .

17.9%, 71.4% 15.8%, 80.9%

20%, 69% 17.6%, 833%

23.3%, 69% 21.9%, 80.9%

25.6%. 69% 25%. 78.5%

Top 3 Top 4

Tf-IDF Thesaurus TEIDF Thesaurus
11.3%, 57.1% 12.2%,64.2% 11.3%, 57.1% 12.2%,64.2%

7.3%,61.9% 7.8%, 66.6% 8.3%, 69% 8.60/0,76.1%

11.6’?’0,73.8% 10.6%, 83.3% 12.1%,- 12.4%, 80.9%

14.6%, 73.8% 13.6%, 80.9% 15.1%, 73.8% 15.3%,80.9%

18.6%, 76.2% 17.4%,83.3% 13%, 61.9% 16.7%, 78.5%

17.1%, 71.4% 18.1%, 83.3% 19.4%, 73.8% l8.6%, 78.5%

20.9%, 73.8% 20.2%, 80.9% 22.7%, 71.4%

21.4%, 69% 24.6%, 80.9% 22.7%. 71.4%

22.7%, 66.6Yo

A- I

Note that when Lag=& total separation of links has been
achieved all true links appear higher up in the lists of
candidate links than all false positives.

1....11: I,.IPI I
. . _. .. . _- -.

I
i 75 - 70

5 65
E

P60

I 55

Figure 2. Recall, precision for all behaviors and IR

Figures 4 and 5 show the progress of the Lag measure for
tf-idf and thesaurus retrieval tests respectively. It can be
observed that in all experiments Lug behaved in a similar
manner. For both tf-idf and thesaurus retrieval, Lug starts
at just above 6. During the first 1-2 iterations, Lug grows,
and for some experiments can go as high as 10. But at
subsequent iterations,'-hg drops significantly, and in all
but one experiment, finishes under 3.

methods.

Reqt.

Believability

Accuracy

Scalability

Utility
Discernabilitv

Communic-
ability

rising
Good link

Bad link
sinking

Cutoff

Endurability

Table 3. Paper Summary.

Analyst
Rsponsb.

Items (c),
(4

Items (c),
(4

Items (e) -
(e)

Valid. ObjJ _yr
precision

precision

DiffAR

Obj.

Study results

Recall of 80.9%,
precision of 39.2%
exceeds other tools
TBD

TBD

TBD

DiffAR grows from
0.2 to ,489-,758 at
last iterations

DiffAR grows from
0.2 to .489-.758 at
last iterations

Lag drops on later
iterations, ending at
3 or less in all but
one test
TBD

4.3 Discussion of results
Table 3 summarizes the contributions of the paper. It is

evident that RETRO supports the objective sub-elements
of discernability. The measures ART, ARF, and DiffAR
indicate that using the relevance feedback oution of
iuinw yiuvius~ uit: iuraiysi wicn simiianry measures rnar
clearly discern betweengood links and bad links. In
addition, the Lag measure shows that by the later
iterations, there are very few bad links at the top of the
candidate link lists.

The results of this study combined with the results of an
earlier study [111 indicate that RETRO is a step forward
with respect to other existing tools in terns of the
accuracy sub-element of believability. In this study,
PSTRO with rdevimce feedback 2nd thesaurus and
filtering achieved recall of 80.9% and precision of almost
40%. In a comparable but different study (different part
of the MODIS dataset), STP achieved overall recall and
precision of 63.4% and 38.8% and RETRO, without
feedback or filtering, achieved overall recall and precision
of 85.4% and 40.7% on the same dataset [l 11.

The current study clearly points to avenues for
improvement. For example, modifying our methods to
ensure that we always return at least one true link per
requirement at iteration 0 will greatly enhance our recall

A- 8

in the process of feedback. We also noted that the poor
results on just a few requirements greatly influenced the
precision measures. By studying these “problem”
requirements, we hope to gain insight that will allow us to
improve the methods of RETRO.

5. Related work
In the context of our work, there are two areas of

interest: requirements tracing and IR as it has been
applied to the problem of requirements analysis. Each
will be addressed below.

Figure 3. Separation between average relevance of
links and false positives.

Separation between Relevance of Links and False Positives

0 8

0 7

J 0 6

J 0 4

0 5 d

i
r

03

0 2

0 1

0
0 1 2 3 4 5 6 7 1)

k8n00n

+ TF-IDF, Top 1 0 Thaslw~w, Top 1 - t TF-IDF. Tap 2 + Thwuus, Top,
-+- TF-IDF. Top 3 --t h s r m r . Top 3 TF-IDF. Tap 4 - -Thewuur. Top 3

Figure 4. Lag for TF-IDF tests.

12 ,-- -

10

8

a
: 6

4

2
b i

0
0 1 2 3 4 5 6 7 8

itsi,tiOii

Extensive work in the area of requirements tracing ,,as
been performed by numerous researchers, including but
not limited to: Pierce [17], Hayes et a1 [lo], Mundie and
Hallsworth [16], Abrahams and Barkley [l], Ramesh
[18,193, and Watkins and Neal [25] Casotto [7], Tsumaki
and Morisawa [24], Sawidis [21], Bohner [5], Anezin
and Brouse [2,6], aad Cleland-Huang [8]. A survey of
work in the field of requirements tracing can be found in

[1 13. In addition, Spanoudakis [22] proposes a rule-based
method for generation of traceability relations. His
approach automatically detects traceability relations
between artifacts and object models using heuristic
traceability rules [22].
Figure 5. Lag for thesaurus retrieval tests.

Lag for Thesaurus

10 1

i
2 -

1 -
0 .

!

0 1 2 3 4 5 6 7 8

ItoratJon

Recently, a number of researchers investigated the use of
IR methods for requirements analysis. Antoniol, Canfora,
De Lucia and Merlo [3] considered two IR methods,
probabilistic IR and vector retrieval (tf-id0 in studying the
traceability of requirements to code for two datasets.
Following them, Marcus and Maletic [14] applied latent
semantic indexing (LSI) technique to the same problem.
While those papers studied requirements-to-code
traceability, in [111 we have addressed the problem of
tracing requirements between different documents in the
project document hierarchy.

6. Conclusions and future work
RETRO was designed for the specific purpose of

supporting the IV&V analyst in performing requirements
tracing. The analyst’s responsibilities for finding and
evaluating candidate links have been facilitated by
RETRO. In addition, the objective sub-elements of the
requirements of believability and discernability have been
evaluated. RETRO supports accuracy and the three sub-
elements of discernability of ensuring that good links rise
to the top of candidate link lists, that bad links sink, and
that a cutoff between good and bad links is apparent.
Also, Science Applications International Corporation
(SAIC), the developer of STP, is in the process of
integrating the backend of RETRO (IR toolkit and
feedback processing module) with the front end of STP.
This is fbrther evidence of RETRO’s ability to support
IV&V analysts.

Future work can be separated into two directions:
improvement of the underlying technologies (IR methods,
etc.); and study of the analyst’s interaction with RETRO
(subjective sub-elements of the requirements). Technical

A- 9

enhancements include use of IR methods better suited for
work with small datasets, implementation of additional
feedback processing methods, implementation of more
intricate techniques for filtering and analysis of candidate
link lists, and using IR techniques to predict the coverage
or satisfaction of traced requirements by their matches. A
study to determine scalability of RETRO will be
undertaken. Finally, we will conduct a study of the work
of analysts with RETRO. This will be a subjective study
to assess the utility sub-element of believability, the
communicability sub-element of discernability, and
endurability.

7. Acknowledgments

Our work is funded by NASA under grant NAGS-1 1732. Our
thanks to Ken McGill, Tim Menzies, Stephanie Ferguson, Pete
Cerna, Mike Norris, Bill Gerstenmaier, Bill Panter, the
International Space Station project, Mike Chapman and the
Metrics Data Program, and the MODIS project for maintaining
their website that provides such useful data. We thank Hua
Shao and James Osborne for assistance with the tf-idf
algorithm. We thank Inies Chemmannoor, Ganapathy
Chidambaram, Ramkumar Singh S, and Rijo Jose Thozhal for
their assistance.

8. References

[I] Abrahams, M. and Barkley, J., ”RTL Verification
Strategies,” IEEE WESCON/98, 15 - 17 September 1998,

[2] Anezin, D., “Process and Methods for Requirements
Tracing (Software Development Life Cycle),” Dissertation,
George Mason University, 1994.

Merlo, E. Recovering Traceability Links between Code and
Documentation. IEEE Transactions on Software
Engineering, Volume 28, No. IO, October 2002,970-983.

[4] Bohner, S., “A Graph Traceability Approach for Software
Change Impact Analysis,” Dissertation, George Mason
University, 1995.

[SI Avouris, N.M. “An Introduction to Software Usability,”
Workshop on Software Usability, University of Patras,
200 1.

[h] Rronse, P., ”A Precess for Use of Mu!timedia I n f x ~ ~ t t i o n
in Requirements identification and Traceability,”
Dissertation, George Mason University, 1992.

[7] Casotto, A.. Run-time requirement tracing, Proceedings of
the IEEEIACM International Conference on Computer-
aided Design, Santa Clara, CA, 1993.

[SI Cleland-Huang, J., Chang, C.K., Sethi, G., Javvaji, K.; Hu,
H., Xia, J. (2002) Automating speculative queries through
event-based requirements traceability. Proceedings of the
lEEE Joint International Requirements Engineering
Conference (RE‘02), Essex, Germany, 9- 13 September,
2002, pages: 289- 296.

pp. 130-134.

_ _ _ _ _ _ ,,.* . - -
. - , ,

[9] Daeza-Yates, R. and Ribeiro-Neto, B. Modern Informailon
Retrieval, Addison-Wesley, 1999.

[101 Hayes, J. Huffman. Risk reduction through requirements
tracing. In The Conference Proceedings of Software
Quality Week 1990, San Francisco, California, May 1990.

[I l]Hayes, J. Huffman; Dekhtyar, A. Osbourne, J. “Improving
Requirements Tracing via Information Retrieval,” ,” in
Proceedings of the International Conference on
Reauirements Engineering IRE), Monterey, California,
September 2003.

[121 Holagent Corporation product RDD- 100,
http://www. holagent.com/newlproducts/modules. html

[131 Level 1A (LIA) and Geolocation Processing Software
Requirements Specification, SDST-O59A, GSFC SBRS,
September 11, 1997.

[141 Marcus, A.; Maletic, J. “Recovering Documentation-to-
Source Code Traceability Links using Latent Semantic
Indexing,” Proceedings of the Twenty-Fifth International
Conference on Software Engineering 2003, Portland,
Oregon, 3 - 10 May 2003, pp. 125 - 135.

[151 MODIS Science Data Processing Software Requirements
Specification Version 2, SDST-089, GSFC SBRS,
November 10, 1997.

Requirements analysis
using SuperTrace PC. In Proceedings of theAmerican
Society of Mechanical Engineers (ASME) for the
Computers in Engineering Symposium at the Energy &
Environmental Expo 1995, Houston, Texas.

[171 Pierce, R. A requirements tracing tool, Proceedings of the
Software Quality Assurance Workshop on Functional and
Performance Issues, 1978.

[181 Ramesh, B., “Factors Influencing Requirements
Traceability Practice,” Communications of the ACM,
December 1998, Volume 41, No. 12, pp. 37-44.

[19]Ramesh, B.; Jarke, M. Toward reference models for
requirements traceability; IEEE Transactions on Software

page(s): 58 -93.
[20] Rational Requisitepro,

http://www .rational.com/productdreqpro/index.jsp
[2 11 Savvidis, I. “A Multistrategy Framework for Analyzing

System Requirements (Software Development),”
Dissertation, George Mason University, 1995.

“Plausible and adaptive requirement
traceability structures,” Proceedings of the 14th
international conference on Software engineering and
knowledge engineering (SEKE). 2002. Ischia. Italy ~ pp.

[23] Telelogic product DOORS,
http://www. telelogic.com/products/doorsers/doors/index.cfm

[24]Tsumaki, T. and Morisawa, Y. “A Framework of
Requirements Tracing using UML,” Proceedings of the
Seventh Asia-Pacific Software Engineering Conference
2000,5 - 8 December 2000, pp. 206 - 2 13.

Watkins, R, Neal, M. “Why and How of Requirements
Tracing,” IEEE Software, Vol. 1 1, No.4, 1994, pp. 104- 106.

[161 Mundie, T. and Hallsworth, F.

B - - - - -

[22] Spanoudakis, G.

135 - 142.

[25/

A-1 0

